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Abstract

In this paper, two sets of nonlinear energy-based approximate models are formulated and used to predict the local
parameters in a two-phase composite system. A numerical procedure using Newton–Raphson method is developed to
solve each system of nonlinear equations in small time steps. The procedure allows the estimation of the local para-
meters through various loading and unloading steps and therefore, is independent of a yield criterion. The local strain
results obtained using the procedure are compared with experimental results obtained at the depth of circumferentially
notched particulate metal matrix composite subjected to variable amplitude loads. The numerical results are in good
agreement with corresponding experimental results for the geometry and load paths considered.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of robust analytical methods for estimating local parameters is an important step in
fatigue life prediction in engineering components with material and/or geometric discontinuities. To make
fatigue life prediction methods more conducive to average design environments, great research efforts have
been directed to the development of simplified analytical techniques that are more computationally effi-
cient. For multiaxial non-proportional loading, some of the existing models attempt to either incorporate
the effect of geometric discontinuity into the constitutive relations, as in Barkey (1993), Barkey et al. (1994),
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Lee et al. (1995), and Gu and Lee (1997), or reformulate uniaxial approximation methods in incremental
forms, as in Singh et al. (1996). However, it should be noted that the majority of the aforementioned efforts
have been directed to monolithic materials. For heterogeneous materials such as particulate metal matrix
composites (PMMCs), the authors developed some relations for predicting the inelastic behavior of PMMC
components under monotonic loading (Owolabi and Singh, 2003a) and cyclic loading (Owolabi and Singh,
2005).

In this paper, two set of nonlinear energy-based relations are presented that can independently predict
the local parameters for a two-phase composite system under complex variable amplitude loads. Newton–
Raphson�s method for solving a system of nonlinear equation is employed to develop a numerical solution
procedure and is designed in a way that allows changing the form of the nonlinear approximate relations.
Each model incorporates the material constitutive relations that define the material stress–strain relations
and nonlinear approximate relations that relate the local parameters. Sections 2 and 3 present the consti-
tutive relations and the nonlinear energy relations, respectively. The numerical procedure is discussed in
Section 4. Section 5 presents the results, and Section 6 gives the conclusions.
2. Constitutive relations

For multiaxial cyclic loading, Owolabi and Singh (2003b) have developed constitutive relations, using
the endochronic theory of plasticity (Valanis, 1980) and the incremental mean field theory (Li and Chen,
1990), to predict the constituents and the composite elastic–plastic strain and stress increments. The matrix
constitutive relation is given as (Owolabi and Singh, 2003b)
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In Eqs. (1)–(3), Deij and Drij are increments in strain and stress tensors, respectively. Vf is the reinforcement
(f) volume fraction. t(m) and E(m) are the matrix (m) Poisson�s ratio and elastic modulus, respectively. Cm

and Cf are the matrix and reinforcement stiffness matrices, respectively. Cr and ar are material constants
determined from the matrix uniaxial stress–strain curve (note that r is the order of a Dirichlet series de-
scribed in Hsu et al., 1991; Owolabi and Singh, 2003b). DS and Dz are the increments in the deviatoric stress
(S) tensor and intrinsic time scale (z) respectively. The intrinsic time scale is a measure of the plastic defor-
mation in the material. I and S are the identity matrix and Eshelby�s tensor, respectively. Subscripts i, j, k, l,
s, and t are indices and q is the current loading step. Writing Eq. (1) fully on the notch tip elements of a
circumferentially notched bar shown in Fig. 1(a), using three terms in the Dirichlet series, gives the follow-
ing relations:



Fig. 1. Illustration of simplified methods (a) elastic and (b) elastic–plastic.
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The intrinsic time scale (z) can be obtained from (Owolabi and Singh, 2003b)
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Writing Eq. (8) fully on the notch tip elements, using three terms in the Dirichlet series, gives
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Note that, in Owolabi and Singh (2003b), three times in the series expansion of the Dirichlet series have
been found to accurately model the matrix cyclic stress–strain curve.
3. Non-linear energy-based relations

Eqs. (4)–(9) will provide some of the set of equations necessary to define the local parameters. Additional
equations are obtained using two energy-based principles discussed below.

3.1. PMMCs incremental equivalent strain energy density (ESED)

For PMMC, here, it is proposed that as long as the notch tip plasticity is localized, parameters that de-
fine its behavior can be found by comparing it to the local behavior obtained in a geometrically identical
elastic body subjected to the same external tractions (see Fig. 1). Specifically, it is proposed that for the
composite system, the weighted contribution of each of the elastic–plastic strain–stress components of
the composite to the increment in strain energy density at the notch tip is the same as the contribution
of each stress–strain components to the increment in composite strain energy density at the notch tip when
obtained from elastic analysis. The proposed hypothesis gives the following relations when expanded at the
notch tip elements
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In Eqs. (10)–(12) ‘‘e’’ represents notch tip components that can be found from an elastic analysis, and ‘‘E ’’
represents matrix elastic–plastic components as estimated by the incremental PMMC ESED method. Note
that higher order terms render the set of equations nonlinear. The nonlinear terms are introduced to in-
crease the accuracy of the model.
3.2. PMMCs incremental total strain energy density (Neuber’s method)

For PMMCs, here, it is proposed that for the composite system, the weighted contribution of each of the
elastic–plastic strain-s-tress components of the constituents to the increment in total energy density at the
notch tip is the same as the contribution of each stress–strain components to the increment in composite
total strain energy density at the notch tip when obtained from elastic analysis. The proposed hypothesis
gives the following relations when expanded at the notch tip elements:
ðre
22Dee

22 þ ee
22Dre

22 þ Dre
22Dee

22Þ � V f ðre
22ðf ÞDee

22ðf Þ þ ee
22ðf ÞDre

22ðf Þ þ Dre
22ðf ÞDee

22ðf ÞÞ

� V mðrN
22ðmÞDeN

22ðmÞ þ eN
22ðmÞDrN

22ðmÞ þ DrN
22ðmÞDeN

22ðmÞÞ ¼ 0; ð13Þ

ðre
33Dee

33 þ ee
33Dre

33 þ Dre
33Dee

33Þ � V f ðre
33ðf ÞDee

33ðf Þ þ ee
33ðf ÞDre

33ðf Þ þ Dre
33ðf ÞDee

33ðf ÞÞ

� V mðrN
33ðmÞDeN

33ðmÞ þ eN
33ðmÞDrN

33ðmÞ þ DrN
33ðmÞDeN

33ðmÞÞ ¼ 0; ð14Þ
and
ðre
23Dee

23 þ ee
23Dre

23 þ Dre
23Dee

23Þ � V f ðre
23ðf ÞDee

23ðf Þ þ ee
23ðf ÞDre

23ðf Þ þ Dre
23ðf ÞDee

23ðf ÞÞ
� V mðrN

23ðmÞDeN
23ðmÞ þ eN

23ðmÞDrN
23ðmÞ þ DrN

23ðmÞDeN
23ðmÞÞ ¼ 0. ð15Þ
In Eqs. (13)–(15), ‘‘N’’ represents matrix elastic–plastic components as estimated by the incremental Neu-
ber�s method.

Either the PMMCs incremental ESED nonlinear relations (Eqs. (10)–(12)) or the PMMCs incremental
Neuber�s nonlinear relations (Eqs. (13)–(15)) can be used in conjunction with the matrix elastic–plastic con-
stitutive relations (Eqs. (4)–(7)) and the intrinsic time-stress relation (Eq. (9)) to define the relationships
needed to solve for the increments in the matrix elastic–plastic local strain and stress tensors and the incre-
ment in the intrinsic time scale. Each set consists of eight relations with eight unknowns (i.e. four incremen-
tal matrix strain, three incremental matrix stress components, and the incremental intrinsic time scale).
Newton–Raphson�s numerical method for solving a system of nonlinear equations can be employed to
solve for the eight unknowns for each increment in applied loads. However, using the eight equations
may be CPU time consuming, especially under complex cyclic loading. Consequently, each set of equations
was reduced to four nonlinear equations with four unknowns as follows.

3.3. Simplified PMMCs ESED energy ratio equations

Substituting Eqs. (5)–(7) into Eqs. (10)–(12) and re-arranging the resulting set of equations yield the
following three relations:
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Eqs. (16)–(18) when used in conjunction with Eq. (9) provide the four equations that are sufficient to solve
for the three unknown matrix local stresses and the intrinsic time scale. The increments in the matrix strain
components are then obtained separately using Eqs. (4)–(7).

3.4. Simplified PMMCs Neuber energy ratio equations

Substituting Eqs. (5)–(7) into Eqs. (13)–(15) and re-arranging the resulting set of equations yield the fol-
lowing three relations:
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Eqs. (19)–(21), when used in conjunction with Eq. (9), provide the four equations that are sufficient to solve
for the three unknown matrix local stresses and the intrinsic time scale. The increments in the matrix strain
components are then obtained separately using Eqs. (4)–(7). The resulting two sets of nonlinear equations
are given by Eqs. (9), (16)–(18) and Eqs. (9), (19)–(21) for the PMMCs ESED and the PMMCs Neuber
methods, respectively. Each set can be solved using the Newton–Raphson�s numerical method for solving
systems of nonlinear relations.
4. Numerical procedure

In this section, the numerical procedure for evaluating the two sets of nonlinear relations is given. The
scheme, illustrated in a pseudo-code shown in Fig. 2, is the same for both models. The scheme calculates the



Fig. 2. Pseudo-code for notch root elastic–plastic strain–stress analysis for PMMCs.
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composite elastic–plastic strain and stress histories at a geometric discontinuity given the material constants
and the elastic local strain–stress histories obtained from the elastic solutions. The composite local
elastic–plastic strain and stress histories that result in response to a cyclically applied load are evaluated
incrementally. That is, they are evaluated for each small increment in the applied load. The elastic–plastic
constitutive relations are applicable from the onset of loading.

For each increment of external load, the increments in the matrix local stress and the intrinsic time scale
are obtained using the two sets of nonlinear equations given by Eqs. (9), (16)–(18) and Eqs. (9), (19)–(21)
for the PMMCs ESED and the PMMCs Neuber methods, respectively. As stated earlier, since the equa-
tions are nonlinear, a numerical iterative method such as Newton–Raphson method is required to obtain
the unknowns. The linear solutions for the increments in the matrix stress components and the increment in
the intrinsic time scale are used as initial guesses for the unknowns in the Newton–Raphson routine. This
reduces the computational time required to obtain the unknowns since the linear solutions provide a close
approximation to the nonlinear solutions. It also ensures that the systems of equations converge. To obtain
the linear solutions for the matrix stress–strain increments, the intrinsic time scale is first obtained from the
nonlinear equation, Eq. (9), using an iterative numerical Secant method. The increment in the time scale is
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then substituted into the linear forms of each set of seven equations (i.e. Eqs. (4)–(7), (10)–(12), and Eqs.
(4)–(7), (13)–(15) for the PMMCs ESED and the PMMCs Neuber method, respectively). These linear forms
are obtained by ignoring the nonlinear terms (i.e. terms with higher orders) in the solution sets. The result-
ing linear sets of algebraic equations are then solved simultaneously to obtain the linear solutions of the
increments in the matrix stress and strain tensors. Using these linear solutions of the matrix stress and
the intrinsic time scale obtained as initial guesses, the two set of nonlinear equations given by Eqs. (9),
(16)–(18) and Eqs. (9), (19)–(21) for the PMMCs ESED and the PMMCs Neuber methods, respectively,
are then solved for the unknown increments in the intrinsic time and matrix stress tensor using Newton–
Raphson method. The increment in the matrix strain tensor is then obtained separately using Eqs. (4)–
(7). The final state of stress and strain at a point can then be obtained by adding the increments to the
previous stress–strain history. The increments in the reinforcement stress and strain can be obtained from
the elastic analysis and the elastic stress concentration factors (Owolabi and Singh, 2005). For each point in
the loading history the composite local elastic–plastic strain and stress tensors can be obtained using the
elastic–plastic matrix strains and stresses, the elastic reinforcement strains and stresses, and the work
relation (Owolabi and Singh, 2003b).

It is important to discuss briefly the convergence criteria used to determine when the Newton–Raphson
solution has converged. Since we are determining the solution of a system of nonlinear equations, it is
reasonable to assume that the solution converges when the norm of the matrix containing the set of solu-
tions is very small on substituting the solutions provided at each iteration step (i.e. kF(A(q))k is small, where
F is the matrix of the function, and A(q) is the matrix of the solution of F at an iteration step q). In the
implementation of the scheme, the norm was made less than or equal to 10�8. In addition, it is required
that the solution at an iteration step is close to the solution as the number of iteration tends to infinity
(i.e. A(q) = A(1)). In other words, it is reasonable to require that kdA(q)k be small, where dA(q) is the
difference between two successive iterations. Both requirements were used as convergence criteria in this
research. This norm was also made less than or equal to the order of 10�8.
5. Results and discussions

The numerical scheme presented in Section 4 is used to implement the analytical models discussed in Sec-
tion 3. The numerical results are compared with the results obtained from experimental tests conducted
using specimens machined from 6061/Al2O3/xxp-T6 PMMC with 10 and 20% volume fractions of reinforc-
ing particles. The specimens with geometries shown in Fig. 3 were subjected to cyclic tension (P)–torsion
(T) load paths shown in Figs. 4 and 5. In the figures, the loading sequence is indicated by numbers and
arrows (note that the loading sequence starts and ends at 0). 3D image correlation technology (Aramis
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Fig. 3. Geometry of the notched specimen (all dimensions in mm).
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Users Manual, 2003) was used to obtain the experimental strains. The results of the experimental tests and
the numerical predictions are presented as plots of local elastic–plastic shear strain, e23, against axial strain,
e22, for all load paths tested as shown in Figs. 6–11. The figures show the experimental and calculated re-
sults for both the 10% and 20% volume fraction of reinforcing particles. The results were given on different
plots for clarity purpose.

The results of experimental strain measurements and the results of the simplified models for the variable
amplitude loading paths shown in Fig. 4 are presented in Figs. 6(a–c), 7(a–c), 8(a–c), 9(a–c). The simplified
models predict the general trends observed in the experimental results for the load paths and volume frac-
tions considered. That is, the models predicted regions of elastic unloading at each corner of the loading
path, followed by regions of elastic–plastic behavior to the next corner. The results of the load paths indi-
cate that the methodologies are capable of predicting the elastic–plastic local strains for these variable
amplitude load sequences. Although the results for both volume fractions of reinforcement indicate that
the analytical methodologies sometimes over-predict, and at other points under-predict the notch root elas-
tic–plastic strains, the differences are small in all cases. These differences may be due to the inability of the
incremental mean field theory to incorporate the point-to-point stress and strain fields in the composite and
its constituents. The differences between the experimental and the predicted results could also have been due
to the approximate values of the material constants used in the endochronic theory-based constitutive
model.



Fig. 6. Notch root shear strains versus axial strains for variable amplitude load path in Fig. 4(a), 10% volume fraction (a) experimental
(b) PMMCs ESED and (c) PMMCs Neuber.

Fig. 7. Notch root shear strains versus axial strains for variable amplitude load path in Fig. 4(a), 20% volume fraction (a) experimental
(b) PMMCs ESED, and (c) PMMCs Neuber.
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Fig. 8. Notch root shear strains versus axial strains for variable amplitude load path in Fig. 4(b), 10% volume fraction (a) experimental
(b) PMMCs ESED, and (c) PMMCs Neuber.

Fig. 9. Notch root shear strains versus axial strains for variable amplitude load path in Fig. 4(b), 20% volume fraction (a) experimental
(b) PMMCs ESED, and (c) PMMCs Neuber.

G.M. Owolabi, M.N.K. Singh / International Journal of Solids and Structures 43 (2006) 5132–5146 5143



Fig. 10. Notch root shear strains versus axial strains for load path in Fig. 5, 10% volume fraction (a) experimental (b) PMMCs ESED,
and (c) PMMCs Neuber.

Fig. 11. Notch root shear strains versus axial strains for load path in Fig. 5, 20% volume fraction (a) experimental (b) PMMCs ESED,
and (c) PMMCs Neuber.
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Figs. 10(a–c) and 11(a–c) show the experimental and predicted results for the X-shape loading
path (Fig. 5). In the X-path, the segments are linear between zero and maximum. The cyclic load was
applied in a counter-clockwise direction. The models results are in good agreement with experimental
results.

It is important to state that the analytical methodologies predict the local strains in the specimens with
both volume fractions of reinforcements. This clearly shows that the models respect the heterogeneous nat-
ure of the material. The difference in the strain results for the 10% and 20% volume fractions may be attrib-
uted to the differences in the amplitude of the applied loads and the effects of volume fractions on the
matrix plastic strains. In the assessment of the constitutive models in Owolabi and Singh (2003b), the results
obtained show that the PMMC materials become stiffer with increasing volume fraction of reinforcement,
thus, leading to diminishing plastic strains. This heterogeneous nature of the material has been incorpo-
rated into the models by accounting for the interactions in the stress fields between the particles in the incre-
mental mean field theory used, and also by incorporating the localized deformation of both the matrix and
the reinforcing particles into the proposed simplified models developed.
6. Conclusions

In this paper, two sets of nonlinear energy-based equations have been implemented to predict the com-
posite elastic–plastic local strains for a two-phase composite system subjected to variable amplitude loads.
The numerical results compare very well to the experimental results for the geometry and load paths tested.
The results further indicate the ability of the models to account for the heterogeneous nature of particulate
metal matrix composites since the analytical methodologies predict the local strains in the materials for
both volume fraction of reinforcement.
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